If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+9t-6=0
a = 1; b = 9; c = -6;
Δ = b2-4ac
Δ = 92-4·1·(-6)
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{105}}{2*1}=\frac{-9-\sqrt{105}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{105}}{2*1}=\frac{-9+\sqrt{105}}{2} $
| 8z=30-2z | | 13x+65=-13 | | w–12=58 | | b-(-5)=-10 | | 9z-10=5z+10 | | 39–12y=7-16y | | 10+8b=6b-10 | | 2+2(3-p)=4+3p | | 3x+2x=-3x+17 | | 40=16+8r | | 1+y+8y=10y-5 | | 1/2x-10+3/2x=x+2 | | (1/5)x+(3/5)=(1/10)x+(7/10) | | 13n=-260 | | x-1+14=4x-8 | | 7x-(3x+4)=-2(2x-1) | | 6(g+4)=42 | | 8(x-8)+3=-85 | | 2p+3p=4p-5 | | –5c=45 | | (2x–15)+(3x+35)=180 | | 4n×3=48 | | 10x+3+3x=5x+ | | -20(10-x)=25x+250 | | -62x(6+1=0 | | 2(x-3)+4=15 | | 3(x+5)=2x+357 | | 5x-19=x+11 | | -z=-8-9z | | -6-20=2n+4-12 | | 200h+199=100h+599 | | .03x=10 |